
Information Processing Letters 45 (1993) 69-73

Elmvier

26 February 1993

Permutations on the Block PRAM
Andrew Chin *
Department of Mathematics, Texas A&M University, College Station, TX 77843, USA

Communicated by M.J. Atallah

Received 12 June 1991

Revised 7 December 1992

Abstract

Chin, A., Permutations on the Block PRAM, Information Processing Letters 45 (1993) 69-73.

In present-day parallel computers, the complexity of permuting N data items in shared memory varies, depending on

whether large blocks can be used for communication. The Block PRAM model of Aggarwal, Chandra and Snir is unique

among shared-memory models of parallel computation in modeling this phenomenon. We characterize the Block PRAM

complexity of some useful classes of permutations, improving known results.

Keywords: Computational complexity; Block PRAM; communication latency; parallel computational complexity; permuta-
tion routing

1. Introduction

Distinct processors working together on the
same problem need to communicate from time to
time. In present-day parallel computers, this com-
munication must take place through a physical
network and is subject to considerable latency.
Because of this latency, parallel computations are
most efficient when large blocks are used for
communication.

The Block PRAM [2] was recently introduced
by Aggarwal, Chandra and Snir as a model of
parallel computation accounting for the effect of
communication latency on computational com-
plexity. The model assumes that interprocessor

Correspondence to: Professor A. Chin, Department of

Mathematics, Texas A&M University, College Station, TX

77843, USA.
* Research supported by a National Science Foundation

Graduate Fellowship and a Rhodes Scholarship. Any opin-
ions, findings, conclusions or recommendations expressed

in this publication are those of the author and do not
necessarily reflect the views of the National Science Foun-

dation or the Rhodes Trust.

communication takes place through shared mem-
ory locations, thereby abstracting the issue of
communication latency away from the topology of
the interprocessor network.

Block PRAM description. A Block PRAM is a
collection of p processors, each with a local
memory, together with a shared memory. All
processors execute the same program, although a
processor may wait instead of executing a given
instruction. Each arithmetic operation and access
to a local memory location can be performed in
unit time. Accesses to shared memory are subject
to a delay 1 due to communication latency, where
1 is a multiple of instruction cycles. A processor
may access a block of b consecutive locations in
the global memory in time 1 + b. No read or write
conflicts are allowed: concurrent requests for
overlapping blocks are serviced sequentially in
some arbitrary order.

The natural data structure in the Block PRAM
is the user-defined array, consisting of a block of
shared memory locations with consecutive logical

0020-0190/93/$06.00 0 1993 - Elsevier Science Publishers B.V. All rights reserved 69

Volume 45, Number 2 INFORMATION PROCESSING LETTERS 26 February 1993

addresses. Data in the Block PRAM shared
memory is addressed according to its location in
the relevant array. To create blocks of data for
communication across the shared memory, it is
often necessary to permute the data in an array.

In this paper, we characterize the complexity
of performing specific frequently used permuta-
tions on the Block PRAM. As in [2], it is assumed
that the permutation to be performed is known in
advance, so that the only operation required is
the movement of the array data in the shared and
local memories. The resulting algorithms are said
to be conservative. A computation is conservative
if the only operation allowed is that of copying
elements in memory.

For convenience throughout this paper, we
assume p and 1 are integral powers of 4, affecting
our bounds by at most a constant factor. All
logarithms will be base 2.

2. Rational permutations

A permutation II on (0, 1,. . . ,2k - 1) z (0, ilk
is rational [l] if it can be expressed as a permuta-
tion ?-r in the bit positions; i.e., n((x,, . . . , xk>> =

(X T(i)? *. .) xTckj). By convention, we write the
most significant bit first. If a rational permutation
is denoted by a capital Greek letter, we denote its
associated bit permutation by the corresponding
lower-case Greek letter.

Rational permutations are the permutations
most often studied in the literature as network
routing problems. Matrix transpositions and per-
fect shuffles are examples of rational permuta-
tions. Standard deterministic permutation algo-
rithms on specific networks [3,7,9-121, and the
optimal Block PRAM permutation algorithm [2]
amount to factoring an arbitrary permutation into
a product of rational permutations.

In this section, we show that the complexity of
performing a given rational permutation on the
Block PRAM can be characterized in terms of its
crossing number, as defined below.

Definition. Let 17 be a rational permutation on
(0, l,... ,2k - l} with bit permutation rr. Denote
K=(l)..., k}, C={l,..., logp}, and F=lk-

70

log I+ l,..., k}. Let C(n) = (i E C: 5-G) @ Cl

and F(n) = {i E F: r(i) P F}. Define c(n), the
course crossing number of IJI, by c(n) = I C(n) I
and f(n), the fine crossing number of U, by
f(n) = I F(17) I. Define pL(IT), the crossing num-
ber of IT, by p(n) = min(c(lll), f(I7)).

Theorem 2.1. Let IL be a rational permutation.
The Block PRAM complexity of performing 17 con-
servatively on n = 2k consecutive locations in
shared memory is

@(n/p + nu(n)/(p log(2n/tp))) ifrP G n,

@(l+fu((n)/log(2lp/n)) cflp>n.

This theorem improves results in [2] by giving
complexity bounds for each rational permutation
rather than worst-case bounds for the class of
rational permutations. We prove first the upper
bound and then the lower bound.

Lemma 2.2. Let Il be a rational permutation. A
Block PRAM can perform IT conservatively on
n = 2k consecutive locations in shared memory in
time

O(n/p +nu(n)/(p W2n/Ip))) iflp Gn,

0(~+1~(l7)/log(2lp/n)) iflp>n.

Proof. Case 1: Ip < n. We may assume lp G n/2,
affecting our bounds by at most a constant factor.
We perform a sequence of basic rational permu-
tations of one of the following forms:

l Rational permutations C where a(i) = i for
i E C. Each processor reads and permutes a
block of size n/p and writes it back.

l Rational permutations .YZ where o(i) = i for
i E F. Each processor reads n/lp blocks of size
1 and writes them into their new locations.

Each basic permutation can be performed in
time O(n/p).

Assume c(n) <f(n); the case f(n) < c(n) is
analogous. Let S = K \ (C U F) f @. In one basic
permutation, any I S I (or fewer) bit positions can
be moved from C(n) into S; in a second basic
permutation, they can be moved to their images

Volume 45, Number 2 INFORMATION PROCESSING LETTERS 26 February 1993

under rr. When all of C(n) has been moved in Lemma 2.3. Let IT be any (not necessarily ratio-
this way, two more basic permutations suffice to nal) permutation on (0, 1,. . . , n - l}. Any conser-
map the remaining positions in C and K \ C to vative Block PRAM algorithm for performing II on
their images under r. The number of basic per- n consecutive locations in shared memory requires
mutations required is time

Case 2: lp > n. We may assume lp & 2n, affect-
ing our bounds by at most a constant factor. We
use the same basic permutations as above. Each
basic permutation can be performed in time O(I).

Assume c(n) <f(n); the case f(n) <c(n) is
analogous. Let T = C n F # @. In one basic per-
mutation, any I T I (or fewer) bit positions can be
moved from x-‘(C(n)) into T; in a second basic
permutation, they can be moved to their images
under r. When all of ~‘(C(nj) has been moved
in this way, two more basic permutations suffice
to map the remaining bit positions in C and
K \ C to their images under r. The number of
basic permutations required is

n(n/p + (n log I- @(n, I))

/(lp log(24Ip))))

forlp<nandl<p,

fl(n/p + (n log p - @(n, p))

/(lp W2n/(W)))

forlp<nandp<l,

a(I+ I(n log(n/p) - @(n, n/p))

/(n W2lp/n)))

forlp>nandlgp,

fi(Z+l(n log(n/l) -@(IL, n/l))

2[l~~‘(C(n)) l/IT11
=2fc(n)/lTI] +2

/(n log(2lp/n)))

forlp>nandp<l.

= O(c(II)/log(2lp/n)). 0

The lower bound uses a potential function
argument first used in 121 to prove the lower
bound for transposing a square matrix on the
Block PRAM. The argument can be stated in the
following definition and lemma.

Definition. Let A = {O, 1,. . . , n - 11, let m I n and
let A be divided into n/m segments A,, . . . ,
A n,m_l each of length m: Ai = {im, . . . , (i + 1)m
- 1). Let n be any (not necessarily rational)
permutation on A. For 0 Q r,s <n/m - 1, let
x,,,(ZI, m) = I IRA,) n A, I. (x,,,(IJ, m) denotes
the number of elements that are mapped from
A, to A,.) Define @(17, m), the m-wise potential
of II, by

Proof (sketch). Our notation @(n, m) is the same
as the initial value of the potential function in the
proof of [2, Theorem 3.31; the final value of the
potential function must be n log m. Without loss
of generality, any conservative Block PRAM algo-
rithm can be divided into distinct, alternating
read rounds and write rounds each taking time
O(I) to access the shared memory. The increase
in the potential after r rounds is shown in [21 to
be at most 1p1 log(2n/(Zp)) for lp <n, m =
min(E, p), and at most rn(log(2lp/n)) for Zp > n,
m = min(n/l, n/p). Cl

Lemma 2.4. Let IT be a rational permutation on
(0, 1,. **, n - l} with n = 2k. Let m = 2’ with j < k.
Let G(m) = {k -j + 1,. . . , k), let GW, m) = ii E
G: r(i) E G(m)) and let g(ll, m) = I GUI, m> I.
Then @(IL, m) = n log m - ng(IL, m).

n/m-l n/m-l

@(n, m> = C C CXL 4

s=o r=O

X log x~,(~, m)

(the notation x:~ indicates that the sum is taken
over positive x,,, only).

Proof. Let r,s E {O, . . . , 2k-i - 1) = (0 l}k-i. Then
by a simple counting argument, ;,,,(n, m) =
I IRA,) nA, I

= 0 if there is an i with 1 G i,rr(i> <k -j and
the ith bit of r is not s(&)>;

= 2i_g(n*m) othemise.

71

Volume 45, Number 2 INFORMATION PROCESSING LETTERS 26 February 1993

Moreover, for a given S, there are exactly
2g(“,“’ choices of r for which ~~~(17, m> is
nonzero. Hence

@(IT, m>
n/m-l n/m-l

= c c X,+lJK m> log &!JK m>
s=O r=O

n/m-l

=c2 g(n, m)(2i-g(II, m) log 2j-g(“. “1)

s=ll

= (n/m)29 -g(D, m>)

=Iz log m -ng(lJI, m). q

Corollary 2.5. Let II be any rational permutation
on (0, 1, . . . , n - l}. Any conservative Block PRAM
algorithm for performing II on n = 2k consecutive
locations in shared memory requires time

a(n/p + w(n)/(p log(2n/lp))) if lp G n,

fi(l+lp(Z7)/log(2fp/n)) ifpl>n.

This completes the proof of Theorem 2.1.

Corollary 2.6. The Block PRAM complexity of
transposing an a x b matrix conservatively on n =
2k consecutive locations in shared memory is

@(n/p + n log min(p, 1, a, b)

/(P log(2VVp))))

if lp Gn,

@(I + 1 log min(p, 1, a, b)/log(2lp/n))

if lp > n.

The crossing numbers of some frequently used
examples of rational permutations are evaluated
in Table 1. For convenience, we assume k is
even.

3. Conclusions

A unique feature of the Block PRAM as a
shared-memory model of parallel computation is
that it provides a complexity theory of permuta-
tions. In this paper, we have characterized the
Block PRAM complexity of important classes of
permutations.

Our results can be extended. Consider the
linear permutations IIM on (0, l)k which defined
by D,(X) = Mx, where M is a nonsingular k x k
O-l valued matrix and arithmetic is modulo 2. Up
to a constant factor, linear permutations are no
harder to perform than the most difficult rational
permutations (e.g., bit reversal), see [4,5]. Ratio-
nal permutations are a special case of linear
permutations where M is a permutation matrix,
so that this result is tight. Linear permutations
have applications to hashing [4,81 and skewing
[5,6] techniques, which provide for parallel mem-
ory access.

The potential function argument used in this
paper (Lemma 2.3) is essentially information-the-
oretic, and there is much room for improved
lower bounds for specific permutations. We be-
lieve that this complexity theory of permutations
has intrinsic combinatorial interest as well as
application to the development of high perfor-
mance, massively parallel computers.

Table 1

Permutation 17

Identity

Perfect shuffle
jth power of shuffle

I X s matrix transpose

n’/* X n”’ transpose
Bit reversal

Bit shuffle

Shuffled row-major
j-way shuffled row-major

[L...,kl
[k, l,...,k -11

[k-j+l,...,k-j]
[k-logr,...,k-logr-l]
[k/2,...,k/2-11
[k,...,ll
[1,3 ,_.., k-1,2,4 ,..., k]
[l, k/2+1,2 ,..., kl
[l, k/j+l,2k/j+l,._., k]

0

min(log p, log l.ljl, k - ljl)
log min(p, 1, r, s)
log min(p. 0

log min(p, 1)

log min(p, I)

log min(p, 0

log min(p, 1)

72

Volume 45, Number 2 INFORMATION PROCESSING LETTERS 26 February 1993

References

[l] A. Aggarwal, A.K. Chandra and M. Snir, Hierarchical

memory with block transfer, in: Proc. 28th Ann. IEEE

Symp. on Foundations of Computer Science (1987) 204-
216.

[2] A. Aggarwal, A.K. Chandra and M. Snir, On communica-

tion latency in PRAM computations, in: Proc. First Ann.
ACM Symp. on Parallel Algorithms and Architectures
(1989) 11-21.

[3] K. Batcher, Sorting networks and their applications, in:

Proc. AFIPS Spring Joint Computing Co@ 32 (1968)
307-314.

[4] A. Chin, Locality-preserving hash functions for general

purpose parallel computation, Algorithmica, to appear.
[5] A. Chin, Practical issues in parallel complexity, D. Phil.

thesis, University of Oxford, August 1991, in preparation.

[6] K. Kim and V.K. Prasanna Kumar, Perfect Latin squares

and parallel array access, in: Proc. 16th Ann. IEEE-ACM
Internat. Symp. on Computer Architecture (1989) 372-379.

[7] J. Lenfant, Parallel permutations of data: a Benes net-

work control algorithm for frequently used permutations,

IEEE Trans. Comput. 27 (1978) 637-647.
[8] K. Mehlhorn and U. Vishkin, Randomized and determin-

istic simulations of PRAMS by parallel machines with

restricted granularity of parallel memories, Acta Inform.
21 (1984) 339-374.

[9] D. Nassimi and S. Sahni, An optimal routing algorithm

for mesh-connected parallel computers, J. ACM 27 (1980)

6-29.

[lo] M.C. Pease III, The indirect binary n-cube microproces-

sor array, IEEE Trans. Comput. 26 (1977) 458-473.
[ll] C.S. Raghavendra and V.K. Prasanna Kumar, Permuta-

tions on Illiac IV-type networks, IEEE Trans. Comput. 35
(1986) 662-669.

[12] H.S. Stone, Parallel processing with perfect shuffle, IEEE
Trans. Comput. 20 (1971) 153-161.

73

