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Virtual Shared Memory: Algorithms and Complexity
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We consider the Block PRAM model of Aggarwal et al. (in “Proceedings, First
Annual ACM Symposium on Parallel Algorithms and Architectures, 1989,”
pp. 11-21). For a Block PRAM model with n/log n processors and communication
latency /=0O(logn), we show that prefix sums can be performed in time
O(llog nflog 1), but list ranking requires time €2(/ log n); these bounds are tight.
These resuits justify an intuitive observation of Gazit et al. (in “Proceedings, 1987
Princeton Workshop on Algorithm, Architecture and Technology Issues for Models
of Concurrent Computation,” pp. 139-156) that algorithm designers should, when
possible, replace the list ranking procedure with the prefix sums procedure. We
demonstrate the value of this technique in choosing between two optimal PRAM
algorithms for finding the connected components of dense graphs. We also give
theoretical improvements for integer sorting and many other algorithms based on
prefix sums, and suggest a relationship between the issue of graph density for the
connected components problem and alternative approaches to integer sorting.
© 1994 Academic Press, Inc.

1. INTRODUCTION

A central problem of contemporary computing science concerns the
extent to which idealized shared memory models of parallel computation,
such as the PRAM, can be efficiently implemented on realistic paraliel
machines, i.e., those with physically distributed memory. In recent years a
number of techniques have been developed which show how such virtual
shared memory architectures can be supported (Valiant, 1990a, 1990b). In
this paper we investigate the complexity of a number of fundamental
parallel algorithms with respect to a specific virtual shared memory model.

In distributed memory architectures, communication (or non-local
memory access) is performed by a sparse interconnection network and
hence is subject to considerable delay, or latency. “It is becoming
abundantly clear,” write Aggarwal et al. (1990), “that much of the com-
plexity in parallel computing is due to the difficulty in communication

* Supported by a National Science Foundation Graduate Fellowship and a Rhodes
Scholarship.
* Supported by the Science and Engineering Research Council under Grant GR/E01010.

199
0890-5401/94 $6.00

Copyright © 1994 by Academic Press, Inc.
All rights of reproduction in any form reserved.



200 CHIN AND MCCOLL

itself.” Although optical networks have been studied extensively as a long-
term prospect, an access to a non-local memory location will continue to
take longer-—and be more difficult to control—than a local computation.

The Block PRAM model of Aggarwal et al. (1989) introduces the issue
of communication latency as a means of focusing attention on the spatial
and temporal locality of references to data in parallel algorithms.

DEFINITION. A Block PRAM with p processors and latency / is taken to
be an exclusive-read, exclusive-write (EREW) PRAM. The latency is
expressed as a multiple of instruction cycles and may be taken to be a func-
tion of the number of processors: e.g., /=8&(log, p) for a hypercube
architecture, and /= @(p'’?) for a two-dimensional mesh. Each processor
is provided with a local memory of unlimited size. There is also a global
memory of unlimited size. A processor may access a location of the local
memory in unit time. It may also access a block of & consecutive locations
in the global memory in time /+ 4. Since no read or write conflicts are
allowed, concurrent requests for overlapping blocks are serviced in some
arbitrary order. The input initially resides in global memory, and the
output must also be stored there.

A Block PRAM algorithm may take up to /+ ! times as long to run as
its EREW PRAM counterpart. Aggarwal et al. (1989) take steps toward a
taxonomy for Block PRAM compilexity by noting that the gap of /+ 1 can
be reduced for several problems including matrix transposition, matrix
multiplication, and the Fast Fourier Transform. When the gap of /+ 1 can-
not be reduced, as in the case of performing general permutations on
elements in memory, the computation cannot efficiently use large blocks for
communication and we say that the problem has fine granularity (Kruskal
and Smith, 1988). In this paper, we present both positive and negative
results in Block PRAM complexity. We show that, subject to standard
assumptions, the Block PRAM time complexity of list ranking is
Q(min(In/p, (nlog p)/(plog(n/ip)))), while that of prefix sums is
O(n/p + Ilog nflog /). When p=n/log n and /= O(log n), the Block PRAM
lower bound on list ranking is Q(/log n). Since list ranking can be per-
formed in time O(n/p + log n) in the EREW PRAM model (Anderson and
Miller, 1988, Cole and Vishkin, 1988b), we may describe list ranking as a
second finely granular problem for the Block PRAM model.

The paper is organized as follows. Section 2 discusses the issue of block
pipelining and presents a general Block PRAM complexity lower bound
based on fan-in arguments. Section 3 describes our results for the two
fundamental problems of prefix sums and list ranking. Section 3.1 presents
an optimal Block PRAM algorithm for prefix sums. Section 3.2 proves a
tight lower bound on the Block PRAM complexity of list ranking.
Section 3.3 discusses some implications of these results. Section 4 extends
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these results by illustrating how communication latency can influence our
choice between two algorithms for the same problem. Section 4.1 gives a
Block PRAM algorithm for integer sorting which minimizes the effect of
communication latency, but increases the number of processors. Section 4.2
proves a tight lower bound on the Block PRAM complexity of tree
contraction. Section 4.3 implements two well-known optimal PRAM algo-
rithms for connected components (Chin e¢ al. 1982; Shiloach and Vishkin,
1982) and presents a clear choice between one Block PRAM algorithm
based on prefix sums and another based on list ranking. Section 4.4 relates
the issue of graph density in the connected components problem to alter-
native approaches to integer sorting. Section 5 concludes with remarks and
open questions.

Although this paper is self-contained, the reader may find it helpful to
refer to Aggarwal er al. (1989) for a detailed introduction to the Block
PRAM model

2. BLocKk PIPELINING AND LATENCY HIDING

In a multiprocessor network, an access by a processor to a single non-
local memory location can, in general, take ©(/) time steps to complete.
Fortunately, this time does not have to be wasted. Instead of idly waiting
for the access to complete, the processor can initiate / more non-local
memory accesses, one after the other, in time ©(/). By the time the last of
these accesses is initiated, we may expect the first access to have been com-
pleted. In this way a processor can perform / non-local memory accesses
not in time @(/?), but optimally, in time @(/). The effect is that, within
constant factors, a steady flow of memory accesses initiated at the
processor results in an equally steady flow of memory accesses being per-
formed remotely in the network, as if there were a pipeline between the
processor and the non-local memory. The overhead due to communication
latency is “tolerated” or “hidden.” This technique is therefore called
pipelining of memory accesses, and the effect of this technique is called
latency hiding.

Currently, it is debatable which sequences of memory accesses by a
processor can be pipelined. There is no theoretical evidence to suggest that
any restrictions are necessary. Accordingly, the Asynchronous PRAM
model (Gibbons, 1989) and the XPRAM model (Valiant, 1990a) both
allow pipelining of arbitrary sequences of accesses to the shared memory.
However, there is as yet no practical evidence that arbitrary pipelining can
be supported (i.e., with small constant factors).

A more conservative alternative is offered by block pipelining. In block
pipelining, only contiguous blocks of memory are pipelined. For several
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years, block pipelining has been achieved and exploited in real multi-
processor networks. As Aggarwal et al. (1989) observe: “Typically, it takes
a substantial period of time to get the first word from global memory, but
after that, subsequent words can be obtained quite rapidly—essentially at
the clock speed of the machine.... The size of a block that is transferred is
typically correlated with communication latency.” Despite the restriction of
block pipelining, latency hiding can be applied to arbitrary PRAM
algorithms, as the following result shows.

THEOREM 2.1 (Aggarwal, Chandra, and Snir, 1989). Let ¢ and k be
positive constants. Then T steps of a PRAM computation with q processors
and g* memory can be simulated (probabilistically) in O(Tq/p) steps on a
Block PRAM with p processors, provided that q = Ip' *°.

With high probability, the O(g/p) memory accesses required by each
Block PRAM processor during each simulation step can be grouped into
O(q/p!) contiguous blocks of length /, making the simulation efficient.

In practical terms, a successful Block PRAM algorithm will enable us to
increase the degree of parallelism when performed on a general purpose
parallel computer. On the other hand, a tight lower bound on Block
PRAM complexity for a given problem is evidence that general techniques
for latency hiding are essentially the best possible.

A simple lower bound applies to a wide variety of computations. A func-
tion f(xy, .., Xx,) is sensitive on all its variables if there is a data instance
x,=4a,, .., x,=a, such that for each i, 1<i<n, there is a b, with
flay, s @iy s @) ZFf(@y, ws biy oy ay).

THEOREM 2.2 (Aggarwal et al., 1989). Let f(x,, .., x,,) be sensitive on all
its variables. Then any Block PRAM algorithm computing f requires time
Q(n/p +llog nflog /).

3. PrReFIx SumMs VERSUS LIST RANKING

Prefix sums and list ranking are two basic problems in the theory and
design of PRAM algorithms (Karp and Ramachandran, 1990). They may
be considered primitive procedures in the sense that parallel algorithms for
many other fundamental problems call for their use as subroutines, but
their own algorithms seem to be structurally independent. However, they
do share several features. They both may be considered to be operations on
arrays; they have linear-time sequential algorithms; and they have optimal
EREW PRAM algorithms with running time O(log n). It is instructive to
contrast them in the Block PRAM model.
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3.1. Prefix Sums

Let @ be an associative binary operation with identity 0 that may be
computed sequentially in O(1) time. The prefix sums @ computation takes
an array A=(ay,a,,a,,.,4,_,) and returns the array (aq,a,@®a,,
aQ®a,®@a,, ... a0®a, Da,® --- Da,_,). If @ is addition, this computa-
tion is called prefix addition. If @ 1is the copy operation defined by
x copy y = x, the prefix sums computation can be used to broadcast, or
make multiple copies of data.

This problem has a trivial linear-time sequential algorithm and a well
known O(n/p +log n) time EREW PRAM algorithm (Ladner and Fischer,
1980). A prefix sums algorithm for the CRCW PRAM model with O(log n)
word size runs in time O(n/p + log n/log log n) (Cole and Vishkin, 1986b,
Reif, 1985). The prefix sums computation is sensitive on all its variables
since the sum of all the elements in the array A must be computed, so that
the lower bound of Theorem 2.2 applies. We now give an optimal Block
PRAM algorithm.

ALGORITHM PREFIX (A4, n, @, ).
Input: Array A of length n.
Output: Array S, the prefix sums @-computation of 4.

Comments: The levels of the [-ary tree are represented as the rows of the
matrix B. The levels of the tree are numbered [ 1---[log p/log /1] from the
leaves to the root. The matrix is taken to be stored in row-major order as
a contiguous array of O(n) entries. The array can be initialized to 0 in time
O(n/p+1). Each processor uses two local variables, count and oldcount; all
other variables are global. The output is returned as array S.

1 for all i, 0 < i < p do in parallel
count « 0
for k < O until [log p/log ! do
B(0,i-[n/p1+ k)« count
count « count @ A(i-[n/p+ k)
B(1, i) « count
2 for r + 1 until [ log p/log /] do
for all i, 0 < i< p/I" do in parallel
oldcount «— 0
count « 0
for k — Quntil /— 1 do
count « count ® B(r, il + k)
B(r, il + k) « oldcount
oldcount « count
B(r+1, i)« count
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3 for r —[log p/log ] down to 1 do
for all §, 0 < i< p/I” do in parallel
for k — 1 until /—1 do
B(r,il+ k)« B(r+1,i{)® B(r, il + k)
4 for all /, 0 < i < p do in parallel
for k — O until [ n/p7—1do
S(-Tn/pl+k—1)«=B1,i)®B0,i-[n/pl+k)
5 Sh—1)«Sn—2)+A4(n—1)

Analysis: Steps1 and 4 each take O(n/p+1I) time. Each of the
[log p/log {7 iterations of steps 2 and 3 takes O(/) time. Step 5 takes O(/)
time. The overall time is O(n/p + /log p/log )= O(n/p+1logn/log!).

THEOREM 3.1. The complexity of performing prefix sums computations
on an array of length n on the Block PRAM is @(n/p + llog nflog ).

In his book on vector models of parallel computation, Blelloch (1990)
introduces the scan vector model of computation, in which prefix sums are
assumed to be primitive operations and implemented in unit time. He
argues the practicality of the scan vector model by noting the low circuit
complexity (Ladner and Fischer, 1980) and the relatively low empirical
running time (Hillis, 1985) of prefix sums computations. Blelloch catalogs
a number of problems in graph theory, static networks, and computational
geometry for which there are parallel algorithms in the scan vector model
which run asymptotically faster than the corresponding benchmark EREW
PRAM algorithms. In particular, scan vector model algorithms for con-
nected components, biconnected components, minimum spanning tree,
maximum flow, maximum independent set, logic simulation, neural
networks, convex hull, building a k-d tree, closest pair in the plane, and
line of sight all run O(log n) times faster than on the EREW PRAM model.
Since, by the previous theorem, the cost of adapting a scan vector model
algorithm to the Block PRAM model using the procedure PREFIX is
O(llog n/log!), the scan vector model algorithms run at most O(//log/)
times slower on a Block PRAM than on an EREW PRAM. This leads us
to suggest the Block PRAM model as a basis in PRAM theory for the
specific study of prefix sums-based parallel algorithms, beyond the
empirical justifications given in Blelloch (1990).

3.2. List Ranking

The linked list is an alternative to the array in storing sequences of
elements in memory. Instead of forming a sequence of consecutive memory
locations, the elements in a linked list can appear in any order in shared
memory. Stored with each element is a pointer giving the address of the
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next element of the sequence. Arrays are preferable to linked lists when it
is necessary to find the kth element of a sequence. However, linked lists are
preferable to arrays when it is necessary to perform many insertion and
deletion operations.

DEerFINITIONS. A linked list of n elements consists of two arrays
A[l---n] and S[1---n]. A4 is called the data array and S is called the
pointer array. The first element in the list, called the head, is stored in 4(1).
For 1 <ign—1, if the ith element of the list is stored in A(j), then the
(i+ 1)th element of the list is stored in A(S(;j)). That is, the (i+ 1)th
element of the list is stored in A(S%)(1)). The values of $*(1), 1 <ig<n—1,
are distinct integers in the range {2, 3, ..,n}. By convention, $™(1)=0.
Given a linked list (A4, S), the list ranking problem is to compute the
equivalent array B. That is, compute B[l-.---n] such that B(i)=
A(SY“~Y(1)). Equivalently, compute elements in an array of distances
D[1---n] such that 4(i)= A(S" 2@ -1)(1)) for each element A(i) of the
list.

The list ranking problem has a trivial linear time serial algorithm and a
standard O(nlogn/p+logn) time EREW PRAM algorithm (Wyllie,
1979). Optimal O(n/p +logn) time EREW PRAM algorithms are also
known (Anderson and Miller, 1988; Cole and Vishkin, 1988). The latter
algorithms are “rather elaborate” (Karp and Ramachandran, 1990), and
Anderson and Miller (1988) concede that the standard algorithm “is still
probably the best deterministic algorithm” in practice. Trading deter-
minism for simplcity and lower constants, randomized EREW PRAM
algorithms taking time O(n/p+logn) have recently appeared (Anderson
and Miller, 1990; Karp and Ramachandran, 1990).

The basic step in all known efficient list ranking algorithms is shori-
cutting individual elements from the linked list. To shortcut an element
A(i), A(i) is removed from the list and the pointer S(S~'(i)) of its
predecessor A(S~!(i)) is updated, or “jumped,” to its successor S(i). (In
this section, we frequently view the array S as an invertible function:
S7!(i) denotes the value x, 1 <x <N, such that S(x)=i) The distance
computation follows each pointer jumping step: if S(i)#0 then D(i) is
updated to D(i)+ D(S(i)). Elements can be shortcut in parallel, provided
that no two adjacent elements are shortcut simultaneously. Finding a large
set of nonadjacent elements to shortcut—symmetry breaking—is a non-
trivial problem, and the improved deterministic algorithms in the literature
have used the parallel symmetry-breaking technique of Cole and Vishkin
(1986a), called “deterministic coin tossing.”

The sequential list ranking algorithm can be viewed as shortcutting the
elements one at a time from the head of the list. It is observed in Anderson
and Miller (1988) that the standard parallel algorithm is inefficient because
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it shortcuts the same element from a number of different lists instead of
leaving it alone once it has been removed: this technique is called recursive
doubling (see, e.g., Gibbons and Rytter, 1988; Leiserson and Maggs, 1988).
The optimal parallel algorithms address this inefficiency by shortcutting
each element exactly once.

DErFINITION.  An algorithm for list ranking is shortcut-based if in its
execution on a list (4, S):

« For each element A(i), some processor executes a shortcut step:
S(S7(i)) « S(i)
Remove A(i)
(Note that S, the array of pointers, changes during the algorithm).

« No two consecutive elements 4(i), A(S(i)) are shortcut in parallel.

In this section we establish an Q(min(/n/p, (nlog p)/(plog(2n/ip))))
lower bound, for Ip <n, on the running time of any shortcut-based Block
PRAM algorithm for list ranking. The proof uses the following result of
Aggarwal et al. (1989) that there exist permutations which are hard for
Block PRAMs to perform conservatively on arrays in global memory. (An
algorithm is conservative if the only operation allowed is copying of
elements in memory.)

THEOREM 3.2 (Aggarwal et al. 1989). There is a permutation IT on n
elements such that any conservative Block PRAM algorithm for performing
IT on n consecutive locations in shared memory requires time $2(min(nl/p,

n log p/(plog(2n/pl)))) for pl<n.

To establish our result we require the following slightly stronger version
of the theorem.

THEOREM 3.3. Let S, be the set of all permutations on {0, 1, ..,n—1}.
Then there is a subset E< S, with log |E| =o(nlogn) such that for all
ITe S\E, any conservative Block PRAM algorithm for performing II
on n consecutive locations in shared memory requires time $2(min(nl/p,

nlog p/(p log(2n/pl)}))) for pl<n.

The proof of this stronger version is easily obtained from the original
one given by Aggarwal et al. (1989), if we note that the number of “easy”
permutations can be bounded. This is because the proof is a counting argu-
ment bounding the number of different permutations that can be attained
by a Block PRAM within a given time bound.

We can now informally describe our problem reduction. Assume there is
a fast Block PRAM algorithm for list ranking. Consider a “hard” permuta-
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tion. We apply the algorithm to a linked list whose pointers are the actions
of the permutation. By observing how the shortcutting takes place, we
derive an impossibly fast conservative algorithm for performing the
permutation in shared memory.

THEOREM 3.4. Any shortcut-based Block PRAM algorithm for list
ranking requires time Q(min(ni/p, nlog p/(p log(2n/pl)))) for pl<n.

Proof. Let # be a Block PRAM algorithm which performs list ranking
by shortcutting within time T=T(n, [, p). Consider an n-cycle IT on
{1, .., n} such that I7e S,\ E, where E is the set of “easy” permutations in
Theorem 3.2. (There are (n—1)! =221°8" p_cycles, so that almost all of
them are “hard.”) Given an array M, we give a conservative algorithm ¥~
which performs I on the elements of M in time bounded by 37.

Let L=(A, S) be a compact linked list whose pointers are given by the
actions of I7; i.e., S(i)=1II(i) for 1 <i<n unless II(i)=1. By convention,
we define S(JT7'(i)) =0. Execute # on the problem instance L. Each of
the list elements A(2), A(3), ..., A(n) must be shortcut from L. To shortcut
A(i), some processor must have exclusive access to each of S(S~'(i)) and
S(i).

Suppose that processor P shortcuts A(i) beginning at time step . As part
of the algorithm ¥~, we schedule the following exchange procedure for pro-
cessor P beginning at time step 3¢, where the actual values of i and 4 ~'({)
are taken from tracing the execution of #° (Temp is a local variable; all
other variables are global):

Temp — M(A~Y(i))
M(A7'(i)) < M(i)
M(i) « Temp

These procedures compose the entire algorithm ¥". We check that ¥~ is
well defined. Clearly each exchange procedure requires at most three times
as long as the corresponding shortcutting procedure, regardless of how
global memory accesses are pipelined, so that the exchanges can be per-
formed at the scheduled times and in the correct sequence. The action
of ¥ on M may be written as a product of 2-cycles. Exchanges which are
performed in parallel correspond to shortcutting nonadjacent elements of L
and, therefore, to disjoint 2-cycles, which commute. Hence no conflicts in
access to global memory are created, and the action of ¥~ is well defined.
It should be noted also that ¥~ is obviously a conservative algorithm.
Finally, we establish that ¥~ performs the permutation I7 on the elements
of M. Let M,, A, be the original input arrays to algorithms ¥~ and ¥/,
respectively. Then it is easy to check that the invariant “for each 7 such that
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A(i) is in the list, M(i)=My(A;'(A(i)))” remains true throughout the
reduction. Now, when any element A(i{) is shortcut in ¥, the corre-
sponding memory exchange in ¥~ places the value of M(i) into the 4(i)th
location of M; this value is never moved again. But by the invariant, this
is the same value that the permutation /7 would have placed into the
location. The algorithm ¥ terminates within time 37, as required. |

Using this reduction, one can observe a 1-1 correspondence between
factorizations of I7 into 2-cycles and possible sequences of shortcutting
steps in reducing L. We also observe that list ranking is finely granular for

I=0(log p), p=n/logn.

COROLLARY 3.5. Assuming shortcut-based algorithms, the complexity of
the problem of ranking a list of length n on a Block PRAM with p=n/logn
processors and latency | = O(log p) is &(/logn).

Proof. The upper bound follows immediately from any of the optimal
O(n/p +1log n) EREW PRAM algorithms for list ranking (Anderson and
Miller, 1988; Cole and Vishkin, 1988), since all of them are shortcut-
based. ||

3.3. Discussion

There is no evidence to suggest that list ranking can be performed
efficiently without shortcutting. This has already cast some doubt on the
prospects for optimal list ranking in practice.

« In a discussion paper titled “Are pointer-based parallel algorithms
realistic?” Miller (1989) recognizes a growing gap between the body of
efficient PRAM algorithms and the real machines being designed to imple-
ment them. On the Connection Machine, a single shortcutting step takes
about 1000 times as long as a single local instruction step. Miller con-
cludes: “I hope that designers of future general-purpose parallel machines
will consider the list ranking problem when they design their machines.”

o Leiserson and Maggs (1988) point out that recursive doubling can
lead to congestion because all of the active pointers propagate toward the
end of the list. This quickly results in too many processors attempting to
access pairs of earlier and later pointers. However, they also show that this
problem can be eliminated by symmetry breaking (e.g., deterministic coin
tossing) and shortcutting each pointer only once.

» Gazit er al. (1987) offer a critical comparison between prefix sums
and list ranking. They observe that on a hypercube machine with
p = n/log n processors, prefix sums can be computed in time 6 log n, but the
list ranking algorithms in Anderson and Miller (1988, 1990) and Cole and
Vishkin (1988) seem to have running time O(log” n). They conclude that “if
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the ultimate purpose of a parallel algorithm is to run it on a fixed connec-
tion machine, then we should minimize the number of list rankings we per-
form; and, whenever possible, replace the list ranking procedure with the
prefix sums procedure.” However, they do not justify this conclusion by
proving an w{n/p +log n) lower bound for list ranking on the hypercube.

Taken together, our results for prefix computations and list ranking give
the first rigorous theoretical justification for these emerging practical con-
cerns about the difficulty of pointer jumping. As a shortcut-based proce-
dure, list ranking represents an asymptotic bottleneck in many Block
PRAM computations. One way to overcome the list ranking bottleneck is
to exploit the similarity between list ranking and prefix computations
(observed, e.g., in Karp and Ramachandran, 1990). It is possible although
not immediately obvious that we can replace list ranking with prefix sums
to obtain asymptotic improvements in complexity.

o Prefix and list ranking computations have been used inter-
changeably for very simple procedures such as finding the minimum of n
values (Gibbons and Rytter, 1988). When such procedures are imple-
mented on the Block PRAM, prefix computations should be used.

o Gazit et al (1987) give an algorithm for tree contraction (see
Section 3.2) which replaces a constant proportion of the list ranking opera-
tions with prefix sums. This has no overall effect on the algorithm’s
asymptotic complexity in any model.

+ More substantively, we demonstrate in Section 3.3 that we can
choose prefix sums over list ranking as the basic step for a Block PRAM
algorithm to find the connected components of dense graphs, with an
asymptotic savings in complexity.

4. APPLICATIONS TO PARALLEL ALGORITHMS

We turn now to the design and analysis of algorithms based on prefix
sums and list ranking. We show how communication latency may influence
our choice between two algorithms for the same problem, and discuss the
extent to which algorithms based on the prefix sums procedure should take
precedence in the theory of PRAM complexity.

4.1. Integer Sorting

Let 4 be an array of #n numbers, or keys, in the range {1,2, .., n}. The
integer sorting problem is to produce an array A’ whose elements are the
keys arranged in nondecreasing order. The stable integer sorting problem
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asks us to produce also a permutation m such that A'(i)= A(n(i)), and
n(i)<n(j) if A'(i}=A'(j) and i<j. A deterministic sequential algorithm
for stable integer sorting taking O(n) time is well known (Aho et al., 1974),
as is a deterministic EREW PRAM algorithm taking time O(n log n/p +1log n)
(Hirschberg, 1978). Specific algorithms for the integer sorting problem
work by moving each key into a group of cells (bucker) according to its
place values (radices) when expressed in some base system. Hence integer
sorting is sometimes referred to as bucket sorting or radix sorting. In the
general sorting problem, the keys are not assumed to have any numerical
value, and must be ordered according to comparisons among the keys.
This makes the problem more difficult: the sequential complexity of general
sorting is O(nlog n).

Aggarwal et al. (1989) describe a method for simulating the Ajtai et al.
(1983) sorting network (“AKS network”) on the Block PRAM model in
O(nlogn/p +!logn) time, so that general keys can be sorted optimally
when Ip<n.

THEOREM 4.1 (Aggarwal et al, 1989). On the Block PRAM, n keys can
be sorted in time O(nlogn/p + !log n).

Although this is a strong result, it does not settle the problem of sorting
for practical purposes. Even after improvements by Paterson (1987), the
AKS network involves such large constants that results based on its
existence still have only theoretical value. Also, there is a gap of log / from
the lower bound of Q(/log n/log!) given by Theorem 2.2. We now give a
stable integer sorting algorithm for which O(l/logn/log!) time can be
attained. The price for this improvement, however, is an asymptotic
increase in the number of processors.

ALGORITHM INTEGER SORT (A4, A', n, n).

Input: Array A of n integers in the range {1,2, .., n}

Output: Sorted array A4’; permutation n such that A'(i) = A(n(i}), and
n(i)<mn(j)if A'(i)=A4'(j) and i<}

Comments: The sort is a radix sort where the integers are expressed in
base x. We assume that x is an integral power of 2, affecting the running
time by at most a constant factor. The bucket for each radix is a row of
B, an x x n matrix. For 1 <i<n, a 1 is placed in the 4(i)th bucket at the
ith column. The number of 1’s in each bucket is counted, and ranks are
assigned to each 1 in the matrix ocurring in order from left to right, then
top to bottom. This is done by combining the prefix of the bucket counts
and the prefix sums along each row.

We assume x < p <n? with fewer processors we can appeal to Brent’s
Theorem (see, for example, Gibbons and Rytter, 1988), which allows us to
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trade time for processors. We cannot use more than n” processors
efficiently. Let m={ p/x |, the number of processors available for each
bucket. Let R« [log n/log x|, the number of rounds in the algorithm.
Steps 4 and 6 are bookkeeping operations. Step 4 puts the full sums
which were computed in step 3 into a contiguous array. Step 6 makes m
copies of each subtotal in the array G to avoid read conflicts in step 7. In
addition to the local variables used in the subroutine PRrEFIx, each pro-
cessor uses the local variables radix and rank; all other variables are global.

0 for all i, 0 <i<p do in parallel
for k <O until [n/p—1 do
m(i-[nfpl+k)—i-Tnpl+k
A'(i-[n/p+k) < A(i-[n/p+k)
for r < 1 until R repeat steps 1-8
1 for all i, j, 0<i<x, 0<j<m do in parallel
for k — O until [n/m]—1 do
B(i,j-[/m]+k)<0
2 for all i, 0<i<x do in parallel
for k <0 wntil [n/p7—1do
radix «— A'(i -[n/p 1+ 1)—x%"".LA'(i [n/p+k)/x"]
radix <« |_radix/x" " |
B(radix, i-[n/p+k)«1
3 for all i, 0<i< x do in parallel
PrEFIX (B, n, +, S;)
4 for all 7, 0 <i< x do in parallel
T()«—S,(i—1)
5 PreFix (7, x, +, G)
6 for all i, 0< i< x do in parallel
C(i, 0)« G(i—1)
Prefix (C;, m, copy, C;)
7 for all i, j, 0<i<x, 0<j<m do in parallel
for kK« 0 until [n/m1—1 do
if B(i, j-[n/m]+k)=1 then
rank < S,(j-[njm1+k)+ Ci(j)
plrank)« j -[n/m1+k
8 for all i, 0 <i< p do in parallel
for k< 0 until [n/p71—1 do
n(i-[n/p1+k)—nlp(i-[n/p1+k))
A'(i-Tnfp+k)« Alnli-[n/p]+k))

Analysis: The initialization step 0 takes O(n/p+1) time. During each
round, steps 1 and 7 take time O(n/m + 1), steps 2 and 8 take time O(ni/p),
step 3 takes time O(n/m + llog n/log 1), step 4 takes time O(/), step 5 takes
time O(/log x/log!), and step 6 takes time O(/log m/log!). The overall
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time complexity is O((log n/log x) - (n(x +!+1log x)/p + ! log n/log !)). By
setting x = 2/'e8U+ (pllogn)(nlog /)] we have

THEOREM 4.2. On the Block PRAM, n integers in the range {1,2, .., n}
can be sorted stably in time O(nllog n/(plog!)+Ilog®n/log?l) for p<n,
and in time O(Ilog® n/(log ! log(pl/n))) for n< p<n’.

CoroLLARY 4.3. On the Block PRAM, n integers in the range
{1,2,..,n} can be sorted stably in time O(llog® n/log®l) on nlogl/logn
processors, and in time O(Ilog n)/log!) on n'** processors, for any £>0.

4.2. Tree Contraction

A (rooted) tree T=(V, E,r) is a connected directed acyclic graph in
which the root r has outdegree 0 and the other vertices have outdegree 1.
The leaves of a tree are those vertices having indegree 0; the other vertices
are called internal vertices. If the leaves of a tree are labeled with constants
and the internal vertices are labeled with basic arithmetic instructions, the
resulting data structure is an expression tree. We define the value of an
expression tree inductively as follows. The value of a leaf is the value of its
label. The value of an internal vertex is the value of its arithmetic instruc-
tion applied to its inputs. The value of an expression tree is the value of its
root. If the operation at an internal vertex is not commutative, the inputs
to that vertex must be ordered in the specification of the expression tree.

An expression tree on n vertices can be represented with three arrays
A, S, G on [1-.-n], where A(i) gives the description of node i, and i is
specified as the G(i)th input to vertex S(i). The definition of shortcutting
can then be extended in the obvious way from linked lists to expression
trees. In the EREW PRAM model, an expression of length » may be
evaluated in O(n/p+logn) time in two stages: first, construction of an
expression tree; and second, evaluation, or contraction, of the expresion
tree. All of the known efficient tree contraction algorithms are shortcut-
based.

THEOREM 4.4 (Bar-On and Vishkin, 1985). Given an arithmetic expres-
sion of length n with operations +, —, x, [, and brackets, the corresponding
expression tree can be constructed on the EREW PRAM in O(n/p + log n)
time.

THEOREM 4.5 (Gazit et al., 1987). An expression tree with n vertices can
be evaluated on the EREW PRAM in O(n/p + log n) time.

We can now state our complexity results for tree contraction on the
Block PRAM. A straightforward problem reduction gives
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PROPOSITION 4.6. Any shortcut-based Block PRAM algorithm for tree
contraction requires time Q(min(nl/p, nlog p/(p log(2n/pi)))) for pl <n.

Proof. From a compact list of length n we can construct an expression
tree of size 2n as follows: each list has value 1, each internal node computes
binary addition, and the list’s pointer array is the same as the tree’s
successor array restricted to the internal nodes. Clearly this reduction can
be performed in time O(n/p+!). Contraction of this tree will rank the
original list. |

CoroLLARY 4.7. The complexity of contracting an expression tree with n
vertices on a Block PRAM with p=n/logn processors and latency
1= 0(log p) is ©(l log n), assuming shortcut-based algorithms.

4.3. Connected Components

Let G=(V, E) be a simple undirected graph, where V is a set of » ver-
tices and E is a set of m edges. G is connected if there exists a path between
every pair of distinct vertices in V. A connected component of G is a maxi-
mal connected subgraph of G. We define G to be dense if m=©(n?) and
sparse otherwise. Connected components can be found sequentially by
depth-first search in time O(m + n) (ie., O(n?) for dense graphs. The best
known PRAM algorithms for finding connected components are the
following:

« a CRCW PRAM algorithm taking O((m + n)a{m, n)/p +logn)
time (Cole and Vishkin, 1986b) (x(m, n) is the inverse Ackermann function,
a function that grows so slowly that it is constant for all practical
purposes.)

« a CREW PRAM algorithm taking O(n*/p + log® n) time (Chin et
al., 1982; Vishkin, 1984).

Note that the CREW PRAM algorithm is optimal for dense graphs and
the CRCW PRAM algorithm is almost optimal for sparse graphs. Whether
there exists an optimal O(log n) time PRAM algorithm for sparse graphs
remains an important open problem in parallel complexity theory. We
consider two algorithms for finding connected components: the algorithm
of Chin et al. (1982) mentioned above and the O((m + n)log n/p + log n)
time CRCW PRAM algorithm of Shiloach and Vishkin (1982).

The main idea of the CREW PRAM algorithm is the path halving techni-
que of Hirschberg (1976). Trees in an undirected graph are constructed, or
“hooked” together, byhaving each vertex point to its lowest-numbered
neighbor. These trees are compressed, and vertices along these paths are
merged into “supervertices.” The process is then repeated on the graph
induced by the supervertices, then on the super-supervertices, and so on.
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The number of supervertices is reduced by half after each iteration, so that
the algorithm is finished after log n stages. Let C[1--.n] be an array of
integers with 1 < C(i) <n such that C induces a pointer graph containing
no cycles of length >2; that is, for k =2, there are no distinct i,, ..., i, such
that C(i;)=1i,, .., Clix_ ) =iy, C(iy)=1,. The path halving problem is to
compute C*, where C*(i)=C" V().

In the algorithms of Chin et al. (1982) and Hirschberg (1976), the path
halving problem is solved on a CREW PRAM in time O(n log n/p + log n):
for each of log n iterations, each processor performs the shortcutting opera-
tion C(i)« C(C(i)). This procedure is essentially the standard parallel
algorithm for list ranking where we do not bother to compute ranks. Here,
concurrent reads are necessary because C(i) = C(j) can occur for distinct
i, j. The path halving problem can also be solved using just the pointer-
jumping steps from any shortcut-based tree contraction algorithm.

The CRCW PRAM algorithm of Shiloach and Vishkin (1982) improves
on the CREW PRAM algorithm by performing the shortcutting operation
only a constant number of times on each processor during each iteration.
All of the vertices, not just the supervertices, share the burden of “hooking”
trees together. This change creates possible write conflicts in global
memory. However, in the Block PRAM model, resolving these conflicts
using the prefix sums procedure takes time O(/ log n/log /), asymptotically
faster than performing log » shortcutting operations in time O(/log n). The
algorithm uses 2m + n processors by assigning one processor to each vertex
and two processors to each edge, one at each end. The vertex processors
are never active at the same time as the edge processors. Among the edge
processors, concurrent accesses occur only between processors corre-
sponding to adjacent edges, and then only in accessing data associated with
the common vertex. Among the vertex processors, concurrent accesses
occur only at pointer jumping steps C(i) « C(C(i)).

Let é(v) denote the number of edges incident to vertex v. To provide
for 4(v) concurrent reads of a datum in global memory associated with v
(a v-datum), we maintain a block of d(v)+ 1 copies of it. (One copy is
kept as the original.) Copies of the initial data can be produced using a
prefix copy computation. To provide for &(v) concurrent writes, each pro-
cessor writes to its own copy of the v-datum. After each write round, we
perform three prefix computations: the first two to find a copy which dis-
agrees with the original (if any), the third to make é(v)+1 copies of it.
Now suppose we are performing the algorithm on a Block PRAM with
p processors, where n<p<m. Then we can schedule the algorithm so
that each Block PRAM processor always simulates several CRCW
PRAM processors accessing the same v-datum. Then since the copies of
each v-datum are stored contiguously, the accesses from each processor
can be pipelined.
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The simulation procedure performs O(m) operations taking time
O(!llog n/log ), provided p=n. By Brent’s Theorem, it follows that each
step involving the m edge processors can be simulated in time
O(m/p+ nllog n/(plog ) +1logn/log!).

We now show how concurrent reads during a pointer jumping step
C(i) « C(C(i)) can be supported on the Block PRAM. The idea is to make
one copy of C(i) for each occurrence of i in the array C. Scheduling the
processors to do this is fairly involved, and is described below. For clarity,
we describe analgorithm for n processors; with fewer than n processors we
can appeal to Brent’s Theorem.

PROCEDURE SHORTCUT (C, n).

1 for all i, 1 < i< n do in parallel
Li)«T(i)«U(i)<0
2 INTEGER SORT(C, C', n, n)
3 B(l)«C'(1)
for even i, 2 <i< n do in parallel
B(i)<C(i)-C'(i—1)
for odd i, 3 <i< n do in parallel
B(i)«C'(i)—C'(i—1)
4 for all {, 1 <i<n do in parallel
if B(i)> 0 then do
D(i)« C(C'(i))
B(i)« 1
PrReFIX (B, n, +, S)
6 for all i, 1 <i<n do in parallel
if B(i}=1 then do
L(iy«i
T(S(i))«i
7 for odd i, 1 <i<»n do in parallel
if 7(()>0 and T(i + 1) #0 then U(T(i)) « T(i+1)
if 7(i)>0 and T(i+1)=0 then U(T(i))~n+1
for even i, 2<i<n do in parallel
if T(i)>0and T(i+1)#0 then U(T(i))« T(i+1)
if 7()>0and T(i+1)=0 then U(T(i))«n+1
8 for r < O until [log n/log/ 71— 1 do
for all i, 1 <i< n do in parallel
if B(i)=1 then do
for k< 0 until /—2 do
meLi)y+U"+(G—~L3E)Y-(I-1)+k
if m < U(i) then do
D(m) <« D(i)

w



216 CHIN AND MCCOLL

B(m)« 1
L(im)« L(i)
U(m) « U(i)
9 for all i/, 1 <i<n do in parallel
C(n(i)) < D(i)

Comments: In Step 3, if B(i)>0 then i is a “leader”; the corresponding
processor is “active” and will fetch the first copy of C(C’(i)).) In step 4, D
is the array where the copies will be stored; it need not be initialized. Step 8
is a specialized broadcasting procedure. B(i) specifies whether processor i
is active or inactive. An active processor i belongs to a group of processors,
numbered from L(i) to U(i}— 1 inclusive, which is making copies of the
value that L(i) originally read in step 4. All necessary memory accesses
having been supported in step §, the shortcutting is performed in step 9.

Analysis: Steps 1, 3, 4, 6, and 7 take O(n/p +1) time. Steps 5 and 8 take
O(n/p+llog n/log!) time. Step9 takes O(nl/p+1) time. Step 2 takes
S(n, I, p) time, where S(n, /, p) is the Block PRAM complexity of integer
sorting n keys. Since the outputs of an integer sorting algorithm are sen-
sitive on all variables, the lower bound of Theorem 2.2 applies to S(n, /, p)
and the overall complexity of the procedure is O(S(n, I, p) + nl/p).

The above algorithm yields the {ollowing result.

THEOREM 4.8. The connected components of a graph with n vertices and
m edges can be found on the Block PRAM in time O(mlogn/p+
nllog® n/(plog !} + S(n, I, p)-logn).

The following corollary shows that our simulation of the Shiloach and
Vishkin (1982) CRCW PRAM algorithm is optimal for sufficiently dense
graphs.

COROLLARY 4.9. [f there is a constant £ >0 such that m= Q(in' **), then
the comnected components of a graph with n vertices and m edges can be
found on the Block PRAM in time O(mlog n/p + llog? n/log /).

The biconnectivity algorithms of Tarjan and Vishkin (1985) and Tsin
and Chin (1984) work by constructing an auxiliary edge graph whose con-
nected components induce the biconnected components of the original
graph. The construction of Tarjan and Vishkin is based on prefix computa-
tions and can be performed in O(m log n/p + ! log® n/log /) time. A number
of other fundamental problems have been shown to be reducible to finding
connected or biconnected components by Awerbuch er al. (1987), Chin
et al. (1982), Tarjan and Vishkin (1985), and Tsin and Chin (1984). Their
results together with Theorem 4.8 yield
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COROLLARY 4.10. The following problems for undirected graphs on n
vertices and m edges can all be solved on the Block PRAM in time
O(m log n/p + ni log® n/(p log 1) + S(n, I, p) - log n): finding biconnected
components, finding separation vertices, finding bridges, finding the minimum
spanning tree, finding an Euler circuit.

5. CONCLUSION

As we attempt to implement PRAM algorithms on realistic models of
computation, it will be worth considering the cost of converting EREW,
CREW, and CRCW PRAM algorithms to the Block PRAM model with a
view to improving the prospects for latency hiding. We have discussed
some of the new intuitions which will be relevant in this analysis. Many
avenues for further research are apparent.

» Having exhibited the value of the prefix sums primitive, Blelloch
(1990) concludes by asking whether there might be other useful primitives
with economical implementations on realistic architectures. The results in
Aggarwal et al. (1989) demonstrate the usefulness of matrix transposition
as a basic operation. We suggest that any further improvement in running
times for the block PRAM model will yield useful primitives. We therefore
believe that it will be fruitful to design algorithms specifically for the Block
PRAM model.

» Our negative results (Theorem 2.2 and 3.4) represent communi-
cation-time tradeoffs in the spirit of Aggarwal et al. (1990), Papadimitriou
and Ullman (1987), and Papadimitriou and Yannakakis (1988). The
reduction of Theorem 3.4 suggests that permutation may become a
problem of fundamental importance for the Block PRAM model of
computation. Further examples of finely granular problems would be of
interest.

» The best known lower bound on the time for a conservative Block
PRAM algorithm to perform an explicitly defined permutation is
Q((n/p) -log min(n/l, n/p)/log(n/lp)) for Ip <n (Aggarwal et al, 1989). The
bound is proved for transpositions of square matrices, which are among the
casiest permutations for a Block PRAM to perform, using information-
theoretic techniques. It is likely that more advanced methods will be
required for improved lower bounds.

» Is path halving easier than list ranking? (Does it help to not have
to compute distances?) Can list ranking be done faster, or at all, by some
method other than shortcutting?

643/113/2-4
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